Sign Language Recognition using Linguistically Derived Sub-Units

نویسندگان

  • Helen Cooper
  • Richard Bowden
چکیده

This work proposes to learn linguistically-derived sub-unit classifiers for sign language. The responses of these classifiers can be combined by Markov models, producing efficient sign-level recognition. Tracking is used to create vectors of hand positions per frame as inputs for sub-unit classifiers learnt using AdaBoost. Grid-like classifiers are built around specific elements of the tracking vector to model the placement of the hands. Comparative classifiers encode the positional relationship between the hands. Finally, binary-pattern classifiers are applied over the tracking vectors of multiple frames to describe the motion of the hands. Results for the sub-unit classifiers in isolation are presented, reaching averages over 90%. Using a simple Markov model to combine the sub-unit classifiers allows sign level classification giving an average of 63%, over a 164 sign lexicon, with no grammatical constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sign language recognition : Generalising to more complex corpora

The aim of this thesis is to find new approaches to Sign Language Recognition (SLR) which are suited to working with the limited corpora currently available. Data available for SLR is of limited quality; low resolution and frame rates make the task of recognition even more complex. The content is rarely natural, concentrating on isolated signs and filmed under laboratory conditions. In addition...

متن کامل

Sign Language Recognition Using Sub-units

This paper discusses sign language recognition using linguistic sub-units. It presents three types of sub-units for consideration; those learnt from appearance data as well as those inferred from both 2D or 3D tracking data. These sub-units are then combined using a sign level classifier; here, two options are presented. The first uses Markov Models to encode the temporal changes between sub-un...

متن کامل

A New Framework for Sign Language Recognition based on 3D Handshape Identification and Linguistic Modeling

Current approaches to sign recognition by computer generally have at least some of the following limitations: they rely on laboratory conditions for sign production, are limited to a small vocabulary, rely on 2D modeling (and therefore cannot deal with occlusions and off-plane rotations), and/or achieve limited success. Here we propose a new framework that (1) provides a new tracking method les...

متن کامل

A parallel multi-stream model for sign language recognition

In this paper, the sub-units in each stream are used and embedded in the multi-stream model. In this framework, sign language recognition system was implemented and evaluated. Experiments were carried out for 5177 Chinese signs. The real time isolated recognition rate is 95.1%. For continuous sign recognition, the word correct rate is 91.8%. This has shown that parallel multi-stream model is po...

متن کامل

Linguistically-motivated sub-word modeling with applications to speech recognition

Despite the proliferation of speech-enabled applications and devices, speech-driven human-machine interaction still faces several challenges. One of theses issues is the new word or the out-of-vocabulary (OOV) problem, which occurs when the underlying automatic speech recognizer (ASR) encounters a word it does not ”know”. With ASR being deployed in constantly evolving domains such as restaurant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010